
Graphs

Introduction

• In the real world, many problems are represented
in terms of objects and connections between
them.
– For example, in an airline route map, we might be

interested in questions like: “What’s the fastest way to
go from Hyderabad to New York?” or “What is the
cheapest way to go from Hyderabad to New York?” To
answer these questions we need information about
connections (airline routes) between objects (towns).
Graphs are data structures used for solving these
kinds`of problems.

Glossary

• Graph: A graph is a pair (V, E), where V is a set
of nodes, called vertices, and £ is a collection
of pairs of vertices, called edges.

– Vertices and edges are positions and store
elements.

– Definitions that we use:

– ○ Directed edge:

o ordered pair of vertices (u, v)

o first vertex u is the origin

o second vertex v is the destination

o Example: one-way road traffic

• Undirected edge:

– unordered pair of vertices (u, v)

– Example: railway lines.

• Directed graph:

– all the edges are directed

– Example: route network

• Undirected graph:

• ▪ all the edges are undirected

• ▪ Example: flight network

• When an edge connects two vertices, the
vertices are said to be adjacent to each other
and the edge is incident on both vertices.

• A graph with no cycles is called a tree. A tree is
an acyclic connected graph.

• A self loop is an edge that connects a vertex to
itself.

• Two edges are parallel if they connect the
same pair of vertices.

• The Degree of a vertex is the number of edges
incident on it.

• • A subgraph is a subset of a graph’s edges
(with associated vertices) that form a

• graph.

• • A path in a graph is a sequence of adjacent
vertices. Simple path is a path with no

• repeated vertices. In the graph below, the
dotted lines represent a path from G to E.

• A cycle is a path where the first and last
vertices are the same. A simple cycle is a

• cycle with no repeated vertices or edges
(except the first and last vertices).

• • We say that one vertex is connected to
another if there is a path that contains both of

• them.

• • A graph is connected if there is a path from
every vertex to every other vertex.

• • If a graph is not connected then it consists of
a set of connected components.

• A directed acyclic graph [DAG] is a directed
graph with no cycles.

• A forest is a disjoint set of trees.

• • A spanning tree of a connected graph is a
subgraph that contains all of that graph’s
vertices and is a single tree. A spanning forest
of a graph is the union of spanning trees of its
connected components.

• • A bipartite graph is a graph whose vertices
can be divided into two sets such that all
edges connect a vertex in one set with a
vertex in the other set.

• In weighted graphs integers (weights) are
assigned to each edge to represent (distances
or costs).

• Graphs with all edges present are called
complete graphs.

• Graphs with relatively few edges (generally if it
edges < |V| log |V|) are called sparse graphs.
– • Graphs with relatively few of the possible edges

missing are called dense.

– • Directed weighted graphs are sometimes called
network.

– • We will denote the number of vertices in a given
graph by |V|, and the number of edges by |E|. Note
that E can range anywhere from 0 to |V|(|V| – l)/2 (in
undirected graph). This is because each node can
connect to every other node.

Applications of Graphs

• Representing relationships between
components in electronic circuits

– Transportation networks: Highway network, Flight
network

– Computer networks: Local area network, Internet,
Web

– Databases: For representing ER (Entity
Relationship) diagrams in databases, for
representing dependency of tables in databases

Graph Representation

• to manipulate graphs we need to represent
them in some useful form.

• Basically, there are three ways of doing this:

– Adjacency Matrix

– Adjacency List

– Adjacency Set

• Adjacency Matrix

• Graph Declaration for Adjacency Matrix

• First, let us look at the components of the
graph data structure. To represent graphs, we
need the

• number of vertices, the number of edges and
also their interconnections. So, the graph can
be

• declared as:

• Description
• In this method, we use a matrix with size V × V. The

values of matrix are boolean. Let us assume the matrix
is Adj. The value Adj[u, v] is set to 1 if there is an edge
from vertex u to vertex v and 0 otherwise.

• In the matrix, each edge is represented by two bits for
undirected graphs. That means, an edge from u to v is
represented by 1 value in both Adj[u,v] and Adj[u,v].
To save time, we can process only half of this
symmetric matrix. Also, we can assume that there is an
“edge” from each vertex to itself. So, Adj[u, u] is set to
1 for all vertices.

• If the graph is a directed graph then we need
to mark only one entry in the adjacency
matrix. As an example, consider the directed
graph below.

• The adjacency matrix for this graph can be
given as:

• Now, let us concentrate on the
implementation. To read a graph, one way is
to first read the vertex names and then read
pairs of vertex names (edges). The code below
reads an undirected graph.

• The adjacency matrix representation is good if
the graphs are dense. The matrix requires
O(V2) bits of storage and O(V2) time for
initialization. If the number of edges is
proportional to V2, then there is no problem
because V2 steps are required to read the
edges. If the graph is sparse, the initialization
of the matrix dominates the running time of
the algorithm as it takes takes O(V2).

• Adjacency List

• Graph Declaration for Adjacency List

• In this representation all the vertices connected to a
vertex v are listed on an adjacency list for that vertex v.
This can be easily implemented with linked lists. That
means, for each vertex v we use a linked list and list
nodes represents the connections between v and other
vertices to which v has an edge.

• The total number of linked lists is equal to the number
of vertices in the graph. The graph ADT can be declared
as:

• Description

• Considering the same example as that of the
adjacency matrix, the adjacency list
representation can be given as:

• Since vertex A has an edge for B and D, we
have added them in the adjacency list for A.
The same is the case with other vertices as
well.

• For this representation, the order of edges in
the input is important. This is because they
determine the order of the vertices on the
adjacency lists.

• The same graph can be represented in many
different ways in an adjacency list. The order
in which edges appear on the adjacency list
affects the order in which edges are processed
by algorithms.

• Disadvantages of Adjacency Lists
• Using adjacency list representation we cannot perform

some operations efficiently. As an example, consider the
case of deleting a node. . In adjacency list representation, it
is not enough if we simply delete a node from the list
representation, if we delete a node from the adjacency list
then that is enough.

• For each node on the adjacency list of that node specifies
another vertex. We need to search other nodes linked list
also for deleting it. This problem can be solved by linking
the two list nodes that correspond to a particular edge and
making the adjacency lists doubly linked. But all these extra
links are risky to process.

• Adjacency Set

• It is very much similar to adjacency list but
instead of using Linked lists, Disjoint Sets
[Union- Find] are used.

• Comparison of Graph Representations:
• Directed and undirected graphs are represented

with the same structures.
• For directed graphs,everything is the same,

except that each edge is represented just once.
An edge from x to y is represented by a 1 value in
Agj[x][y] in the adjacency matrix, or by adding y
on x’s adjacency list.

• For weighted graphs, everything is the same,
except fill the adjacency matrix with weights
instead of boolean values.

Graph Traversals

• To solve problems on graphs, we need a mechanism for
traversing the graphs. Graph traversal algorithms are
also called graph search algorithms. Like trees traversal
algorithms (Inorder, Preorder, Postorder and Level-
Order traversals), graph search algorithms can be
thought of as starting at some source vertex in a graph
and “searching” the graph by going through the edges
and marking the vertices. Now, we will discuss two
such algorithms for traversing the graphs.
– Depth First Search [DFS]

– Breadth First Search [BFS]

• Depth First Search [DFS]:

• DFS algorithm works in a manner similar to
preorder traversal of the trees. Like preorder
traversal, internally this algorithm also uses
stack.

• Let us consider the following example.
Suppose a person is trapped inside a maze. To
come out from that maze, the person visits
each path and each intersection (in the worst
case). Let us say the person uses two colors of
paint to mark the intersections already
passed. When discovering a new intersection,
it is marked grey, and he continues to go
deeper.

• After reaching a “dead end” the person knows
that there is no more unexplored path from
the grey intersection, which now is completed,
and he marks it with black. This “dead end” is
either an intersection which has already been
marked grey or black, or simply a path that
does not lead to an intersection

• The intersections of the maze are the vertices
and the paths between the intersections are
the edges of the graph. The process of
returning from the “dead end” is called
backtracking. We are trying to go away from
the starting vertex into the graph as deep as
possible, until we have to backtrack to the
preceding grey vertex. In DFS algorithm, we
encounter the following types of edges.

• For most algorithms boolean classification,
unvisited/visited is enough (for three color
implementation refer to problems section).
That means, for some problems we need to
use three colors, but for our discussion two
colors are enough.

• Initially all vertices are marked unvisited (false).
The DFS algorithm starts at a vertex u in the
graph. By starting at vertex u it considers the
edges from u to other vertices.

• If the edge leads to an already visited vertex, then
backtrack to current vertex u. If an edge leads to
an unvisited vertex, then go to that vertex and
start processing from that vertex.

• That means the new vertex becomes the current
vertex. Follow this process until we reach the
dead-end. At this point start backtracking.

• The process terminates when backtracking
leads back to the start vertex. The algorithm
based on this mechanism is given below:
assume Visited[] is a global array.

• As an example, consider the following graph. We can
see that sometimes an edge leads to an already
discovered vertex. These edges are called back edges,
and the other edges are called tree edges because
deleting the back edges from the graph generates a
tree.

• The final generated tree is called the DFS tree and the
order in which the vertices are processed is called DFS
numbers of the vertices. In the graph below, the gray
color indicates that the vertex is visited (there is no
other significance). We need to see when the Visited
table is updated.

• From the above diagrams, it can be seen that the DFS
traversal creates a tree (without back edges) and we
call such tree a DFS tree. The above algorithm works
even if the given graph has connected components.

• The time complexity of DFS is O(V + E), if we use
adjacency lists for representing the graphs. This is
because we are starting at a vertex and processing the
adjacent nodes only if they are not visited. Similarly, if
an adjacency matrix is used for a graph representation,
then all edges adjacent to a vertex can’t be found
efficiently, and this gives O(V2) complexity.

• Applications of DFS

– Topological sorting

– Finding connected components

– Finding articulation points (cut vertices) of the

 graph

– Finding strongly connected components

– Solving puzzles such as mazes

• Breadth First Search [BFS]:

• The BFS algorithm works similar to level – order
traversal of the trees. Like level – order traversal, BFS
also uses queues. In fact, level – order traversal got
inspired from BFS. BFS works level by level. Initially, BFS
starts at a given vertex, which is at level 0. In the first
stage it visits all vertices at level 1 (that means, vertices
whose distance is 1 from the start vertex of the graph).
In the second stage, it visits all vertices at the second
level. These new vertices are the ones which are
adjacent to level 1 vertices.

• BFS continues this process until all the levels of
the graph are completed. Generally queue data
structure is used for storing the vertices of a
level. As similar to DFS, assume that initially all
vertices are marked unvisited (false). Vertices that
have been processed and removed from the
queue are marked visited (true). We use a queue
to represent the visited set as it will keep the
vertices in the order of when they were first
visited. The implementation for the above
discussion can be given as:

• Breadth First Search [BFS]:

• As similar to DFS, assume that initially all
vertices are marked unvisited (false). Vertices
that have been processed and removed from
the queue are marked visited (true).

• We use a queue to represent the visited set as
it will keep the vertices in the order of when
they were first visited. The implementation for
the above discussion can be given as:

• As an example, let us consider the same graph
as that of the DFS example. The BFS traversal
can be shown as:

• Time complexity of BFS is O(V + E), if we use
adjacency lists for representing the graphs,
and O(V2) for adjacency matrix
representation.

• Applications of BFS

– Finding all connected components in a graph

– Finding all nodes within one connected
component

– Finding the shortest path between two nodes

– Testing a graph for bipartiteness

• Comparing DFS and BFS

• Comparing BFS and DFS, the big advantage of DFS is
that it has much lower memory requirements than BFS
because it’s not required to store all of the child
pointers at each level. Depending on the data and what
we are looking for, either DFS or BFS can be
advantageous. For example, in a family tree if we are
looking for someone who’s still alive and if we assume
that person would be at the bottom of the tree, then
DFS is a better choice. BFS would take a very long time
to reach that last level.

• The DFS algorithm finds the goal faster. Now, if
we were looking for a family member who died a
very long time ago, then that person would be
closer to the top of the tree. In this case, BFS
finds faster than DFS. So, the advantages of either
vary depending on the data and what we are
looking for.

• DFS is related to preorder traversal of a tree. Like
preorder traversal, DFS visits each node before its
children. The BFS algorithm works similar to level
– order traversal of the trees.

• If someone asks whether DFS is better or BFS is
better, the answer depends on the type of the
problem that we are trying to solve.

• BFS visits each level one at a time, and if we know
the solution we are searching for is at a low
depth, then BFS is good. DFS is a better choice if
the solution is at maximum depth.

• The below table shows the differences between
DFS and BFS in terms of their applications.

Minimal Spanning Tree

• The Spanning tree of a graph is a subgraph
that contains all the vertices and is also a tree.
A graph may have many spanning trees. As an
example, consider a graph with 4 vertices as
shown below. Let us assume that the corners
of the graph are vertices.

• For this simple graph, we can have multiple spanning trees as
shown below.

• The algorithm we will discuss now is minimum spanning tree in an
undirected graph. We assume that the given graphs are weighted
graphs. If the graphs are unweighted graphs then we can still use
the weighted graph algorithms by treating all weights as equal. A
minimum spanning tree of an undirected graph G is a tree formed
from graph edges that connect all the vertices of G with minimum
total cost (weights). A minimum spanning tree exists only if the
graph is connected.

• There are two famous algorithms for this problem:
– Prim’s Algorithm
– Kruskal’s Algorithm

• Prim’s Algorithm:

• Prim’s algorithm is almost the same as
Dijkstra’s algorithm. As in Dijkstra’s algorithm,
in Prim’s algorithm we keep the values
distance and paths in the distance table. The
only exception is that since the definition of
distance is different, the updating statement
also changes a little. The update statement is
simpler than before.

• The entire implementation of this algorithm is
identical to that of Dijkstra’s algorithm. The
running time is O(|V|2) without heaps [good
for dense graphs], and O (ElogV) using binary
heaps [good for sparse graphs].

• Kruskal’s Algorithm
• The algorithm starts with V different trees (V is the vertices

in the graph). While constructing the minimum spanning
tree, every time Kruskal’s alorithm selects an edge that has
minimum weight and then adds that edge if it doesn’t
create a cycle. So, initially, there are | V | single-node trees
in the forest. Adding an edge merges two trees into one.
When the algorithm is completed, there will be only one
tree, and that is the minimum spanning tree. There are two
ways of implementing Kruskal’s algorithm:
– By using Disjoint Sets: Using UNION and FIND operations
– By using Priority Queues: Maintains weights in priority queue

• The appropriate data structure is the UNION/FIND
algorithm [for implementing forests]. Two vertices
belong to the same set if and only if they are
connected in the current spanning forest.

• Each vertex is initially in its own set. If u and v are in
the same set, the edge is rejected because it forms a
cycle. Otherwise, the edge is accepted, and a UNION is
performed on the two sets containing u and v.

• As an example, consider the following graph (the edges
show the weights).

• Now let us perform Kruskal’s algorithm on this
graph. We always select the edge which has
minimum weight.

• From the above graph, the edges which have
minimum weight (cost) are: AD and BE. From
these two we can select one of them and let
us assume that we select AD (dotted line).

• The next low cost edges are CB and EF. But if we
select CB, then it forms a cycle. So we discard it.

• This is also the case with EF. So we should not
select those two. And the next low cost is 9 (BD
and EG).

• Selecting BD forms a cycle so we discard it.
Adding EG will not form a cycle and therefore
with this edge we complete all vertices of the
graph.

• Note:The worst-case running time of this
algorithm is O(ElogE), which is dominated by
the heap operations.

• That means, since we are constructing the
heap with E edges, we need O(ElogE) time to
do that.

