
Graphs 



Introduction 
 

• In the real world, many problems are represented 
in terms of objects and connections between 
them.  
– For example, in an airline route map, we might be 

interested in questions like: “What’s the fastest way to 
go from Hyderabad to New York?” or “What is the 
cheapest way to go from Hyderabad to New York?” To 
answer these questions we need information about 
connections (airline routes) between objects (towns). 
Graphs are data structures used for solving these 
kinds`of problems. 



Glossary 

• Graph: A graph is a pair (V, E), where V is a set 
of nodes, called vertices, and £ is a collection 
of pairs of vertices, called edges. 

–  Vertices and edges are positions and store 
elements. 



– Definitions that we use: 

– ○ Directed edge: 

o  ordered pair of vertices (u, v) 

o  first vertex u is the origin 

o  second vertex v is the destination 

o  Example: one-way road traffic 

 



• Undirected edge: 

–  unordered pair of vertices (u, v) 

–  Example: railway lines. 

 



• Directed graph: 

– all the edges are directed 

– Example: route network 

 

 



 



• Undirected graph: 

• ▪ all the edges are undirected 

• ▪ Example: flight network 



• When an edge connects two vertices, the 
vertices are said to be adjacent to each other 
and the edge is incident on both vertices. 

• A graph with no cycles is called a tree. A tree is 
an acyclic connected graph. 

 



• A self loop is an edge that connects a vertex to 
itself. 



• Two edges are parallel if they connect the 
same pair of vertices. 



• The Degree of a vertex is the number of edges 
incident on it. 

• • A subgraph is a subset of a graph’s edges 
(with associated vertices) that form a 

• graph. 

• • A path in a graph is a sequence of adjacent 
vertices. Simple path is a path with no 

• repeated vertices. In the graph below, the 
dotted lines represent a path from G to E. 



• A cycle is a path where the first and last 
vertices are the same. A simple cycle is a 

• cycle with no repeated vertices or edges 
(except the first and last vertices). 



• • We say that one vertex is connected to 
another if there is a path that contains both of 

• them. 

• • A graph is connected if there is a path from 
every vertex to every other vertex. 

• • If a graph is not connected then it consists of 
a set of connected components. 

 



• A directed acyclic graph [DAG] is a directed 
graph with no cycles. 



• A forest is a disjoint set of trees. 

• • A spanning tree of a connected graph is a 
subgraph that contains all of that graph’s 
vertices and is a single tree. A spanning forest 
of a graph is the union of spanning trees of its 
connected components. 

• • A bipartite graph is a graph whose vertices 
can be divided into two sets such that all 
edges connect a vertex in one set with a 
vertex in the other set. 

 



• In weighted graphs integers (weights) are 
assigned to each edge to represent (distances 
or costs). 



• Graphs with all edges present are called 
complete graphs. 

 



• Graphs with relatively few edges (generally if it 
edges < |V| log |V|) are called sparse graphs. 
– • Graphs with relatively few of the possible edges 

missing are called dense. 

– • Directed weighted graphs are sometimes called 
network. 

– • We will denote the number of vertices in a given 
graph by |V|, and the number of edges by |E|. Note 
that E can range anywhere from 0 to |V|(|V| – l)/2 (in 
undirected graph). This is because each node can 
connect to every other node. 



Applications of Graphs 

• Representing relationships between 
components in electronic circuits 

–  Transportation networks: Highway network, Flight 
network 

–  Computer networks: Local area network, Internet, 
Web 

–  Databases: For representing ER (Entity 
Relationship) diagrams in databases, for 
representing dependency of tables in databases 



Graph Representation 

• to manipulate graphs we need to represent 
them in some useful form. 

• Basically, there are three ways of doing this: 

–  Adjacency Matrix 

–  Adjacency List 

–  Adjacency Set 



• Adjacency Matrix 

• Graph Declaration for Adjacency Matrix 

• First, let us look at the components of the 
graph data structure. To represent graphs, we 
need the 

• number of vertices, the number of edges and 
also their interconnections. So, the graph can 
be 

• declared as: 





• Description 
• In this method, we use a matrix with size V × V. The 

values of matrix are boolean. Let us assume the matrix 
is Adj. The value Adj[u, v] is set to 1 if there is an edge 
from vertex u to vertex v and 0 otherwise. 

• In the matrix, each edge is represented by two bits for 
undirected graphs. That means, an edge from u to v is 
represented by 1 value in both Adj[u,v ] and Adj[u,v]. 
To save time, we can process only half of this 
symmetric matrix. Also, we can assume that there is an 
“edge” from each vertex to itself. So, Adj[u, u] is set to 
1 for all vertices. 



• If the graph is a directed graph then we need 
to mark only one entry in the adjacency 
matrix. As an example, consider the directed 
graph below. 

 



• The adjacency matrix for this graph can be 
given as: 

 



• Now, let us concentrate on the 
implementation. To read a graph, one way is 
to first read the vertex names and then read 
pairs of vertex names (edges). The code below 
reads an undirected graph. 





• The adjacency matrix representation is good if 
the graphs are dense. The matrix requires 
O(V2) bits of storage and O(V2) time for 
initialization. If the number of edges is 
proportional to V2, then there is no problem 
because V2 steps are required to read the 
edges. If the graph is sparse, the initialization 
of the matrix dominates the running time of 
the algorithm as it takes takes O(V2). 



• Adjacency List 

• Graph Declaration for Adjacency List 

• In this representation all the vertices connected to a 
vertex v are listed on an adjacency list for that vertex v. 
This can be easily implemented with linked lists. That 
means, for each vertex v we use a linked list and list 
nodes represents the connections between v and other 
vertices to which v has an edge. 

• The total number of linked lists is equal to the number 
of vertices in the graph. The graph ADT can be declared 
as: 





• Description 

• Considering the same example as that of the 
adjacency matrix, the adjacency list 
representation can be given as: 



• Since vertex A has an edge for B and D, we 
have added them in the adjacency list for A. 
The same is the case with other vertices as 
well. 

 









• For this representation, the order of edges in 
the input is important. This is because they 
determine the order of the vertices on the 
adjacency lists. 

• The same graph can be represented in many 
different ways in an adjacency list. The order 
in which edges appear on the adjacency list 
affects the order in which edges are processed 
by algorithms. 



• Disadvantages of Adjacency Lists 
• Using adjacency list representation we cannot perform 

some operations efficiently. As an example, consider the 
case of deleting a node. . In adjacency list representation, it 
is not enough if we simply delete a node from the list 
representation, if we delete a node from the adjacency list 
then that is enough. 

•  For each node on the adjacency list of that node specifies 
another vertex. We need to search other nodes linked list 
also for deleting it. This problem can be solved by linking 
the two list nodes that correspond to a particular edge and 
making the adjacency lists doubly linked. But all these extra 
links are risky to process. 



• Adjacency Set 

• It is very much similar to adjacency list but 
instead of using Linked lists, Disjoint Sets 
[Union- Find] are used. 



• Comparison of Graph Representations: 
• Directed and undirected graphs are represented 

with the same structures.  
• For directed graphs,everything is the same, 

except that each edge is represented just once. 
An edge from x to y is represented by a 1 value in 
Agj[x][y] in the adjacency matrix, or by adding y 
on x’s adjacency list. 

• For weighted graphs, everything is the same, 
except fill the adjacency matrix with weights 
instead of boolean values. 





Graph Traversals 

• To solve problems on graphs, we need a mechanism for 
traversing the graphs. Graph traversal algorithms are 
also called graph search algorithms. Like trees traversal 
algorithms (Inorder, Preorder, Postorder and Level-
Order traversals), graph search algorithms can be 
thought of as starting at some source vertex in a graph 
and “searching” the graph by going through the edges 
and marking the vertices. Now, we will discuss two 
such algorithms for traversing the graphs. 
–  Depth First Search [DFS] 

–  Breadth First Search [BFS] 



• Depth First Search [DFS]: 

• DFS algorithm works in a manner similar to 
preorder traversal of the trees. Like preorder 
traversal, internally this algorithm also uses 
stack. 



• Let us consider the following example. 
Suppose a person is trapped inside a maze. To 
come out from that maze, the person visits 
each path and each intersection (in the worst 
case). Let us say the person uses two colors of 
paint to mark the intersections already 
passed. When discovering a new intersection, 
it is marked grey, and he continues to go 
deeper. 



• After reaching a “dead end” the person knows 
that there is no more unexplored path from 
the grey intersection, which now is completed, 
and he marks it with black. This “dead end” is 
either an intersection which has already been 
marked grey or black, or simply a path that 
does not lead to an intersection 



• The intersections of the maze are the vertices 
and the paths between the intersections are 
the edges of the graph. The process of 
returning from the “dead end” is called 
backtracking. We are trying to go away from 
the starting vertex into the graph as deep as 
possible, until we have to backtrack to the 
preceding grey vertex. In DFS algorithm, we 
encounter the following types of edges. 





• For most algorithms boolean classification, 
unvisited/visited is enough (for three color 
implementation refer to problems section). 
That means, for some problems we need to 
use three colors, but for our discussion two 
colors are enough. 



• Initially all vertices are marked unvisited (false). 
The DFS algorithm starts at a vertex u in the 
graph. By starting at vertex u it considers the 
edges from u to other vertices.  

• If the edge leads to an already visited vertex, then 
backtrack to current vertex u. If an edge leads to 
an unvisited vertex, then go to that vertex and 
start processing from that vertex.  

• That means the new vertex becomes the current 
vertex. Follow this process until we reach the 
dead-end. At this point start backtracking. 



• The process terminates when backtracking 
leads back to the start vertex. The algorithm 
based on this mechanism is given below: 
assume Visited[] is a global array. 







• As an example, consider the following graph. We can 
see that sometimes an edge leads to an already 
discovered vertex. These edges are called back edges, 
and the other edges are called tree edges because 
deleting the back edges from the graph generates a 
tree. 

• The final generated tree is called the DFS tree and the 
order in which the vertices are processed is called DFS 
numbers of the vertices. In the graph below, the gray 
color indicates that the vertex is visited (there is no 
other significance). We need to see when the Visited 
table is updated. 































• From the above diagrams, it can be seen that the DFS 
traversal creates a tree (without back edges) and we 
call such tree a DFS tree. The above algorithm works 
even if the given graph has connected components. 

• The time complexity of DFS is O(V + E), if we use 
adjacency lists for representing the graphs. This is 
because we are starting at a vertex and processing the 
adjacent nodes only if they are not visited. Similarly, if 
an adjacency matrix is used for a graph representation, 
then all edges adjacent to a vertex can’t be found 
efficiently, and this gives O(V2) complexity. 



• Applications of DFS 

–  Topological sorting 

–  Finding connected components 

–  Finding articulation points (cut vertices) of the   

     graph 

– Finding strongly connected components 

– Solving puzzles such as mazes 



• Breadth First Search [BFS]: 

• The BFS algorithm works similar to level – order 
traversal of the trees. Like level – order traversal, BFS 
also uses queues. In fact, level – order traversal got 
inspired from BFS. BFS works level by level. Initially, BFS 
starts at a given vertex, which is at level 0. In the first 
stage it visits all vertices at level 1 (that means, vertices 
whose distance is 1 from the start vertex of the graph). 
In the second stage, it visits all vertices at the second 
level. These new vertices are the ones which are 
adjacent to level 1 vertices. 



• BFS continues this process until all the levels of 
the graph are completed. Generally queue data 
structure is used for storing the vertices of a 
level. As similar to DFS, assume that initially all 
vertices are marked unvisited (false). Vertices that 
have been processed and removed from the 
queue are marked visited (true). We use a queue 
to represent the visited set as it will keep the 
vertices in the order of when they were first 
visited. The implementation for the above 
discussion can be given as: 



• Breadth First Search [BFS]: 

• As similar to DFS, assume that initially all 
vertices are marked unvisited (false). Vertices 
that have been processed and removed from 
the queue are marked visited (true).  

• We use a queue to represent the visited set as 
it will keep the vertices in the order of when 
they were first visited. The implementation for 
the above discussion can be given as: 





• As an example, let us consider the same graph 
as that of the DFS example. The BFS traversal 
can be shown as: 















• Time complexity of BFS is O(V + E), if we use 
adjacency lists for representing the graphs, 
and O(V2) for adjacency matrix 
representation. 



• Applications of BFS 

–  Finding all connected components in a graph 

–  Finding all nodes within one connected 
component 

–  Finding the shortest path between two nodes 

–  Testing a graph for bipartiteness 



• Comparing DFS and BFS 

• Comparing BFS and DFS, the big advantage of DFS is 
that it has much lower memory requirements than BFS 
because it’s not required to store all of the child 
pointers at each level. Depending on the data and what 
we are looking for, either DFS or BFS can be 
advantageous. For example, in a family tree if we are 
looking for someone who’s still alive and if we assume 
that person would be at the bottom of the tree, then 
DFS is a better choice. BFS would take a very long time 
to reach that last level. 



• The DFS algorithm finds the goal faster. Now, if 
we were looking for a family member who died a 
very long time ago, then that person would be 
closer to the top of the tree. In this case, BFS 
finds faster than DFS. So, the advantages of either 
vary depending on the data and what we are 
looking for. 

• DFS is related to preorder traversal of a tree. Like 
preorder traversal, DFS visits each node before its 
children. The BFS algorithm works similar to level 
– order traversal of the trees. 



• If someone asks whether DFS is better or BFS is 
better, the answer depends on the type of the 
problem that we are trying to solve. 

• BFS visits each level one at a time, and if we know 
the solution we are searching for is at a low 
depth, then BFS is good. DFS is a better choice if 
the solution is at maximum depth.  

• The below table shows the differences between 
DFS and BFS in terms of their applications. 





Minimal Spanning Tree 
 

• The Spanning tree of a graph is a subgraph 
that contains all the vertices and is also a tree. 
A graph may have many spanning trees. As an 
example, consider a graph with 4 vertices as 
shown below. Let us assume that the corners 
of the graph are vertices. 



• For this simple graph, we can have multiple spanning trees as 
shown below. 

• The algorithm we will discuss now is minimum spanning tree in an 
undirected graph. We assume that the given graphs are weighted 
graphs. If the graphs are unweighted graphs then we can still use 
the weighted graph algorithms by treating all weights as equal. A 
minimum spanning tree of an undirected graph G is a tree formed 
from graph edges that connect all the vertices of G with minimum 
total cost (weights). A minimum spanning tree exists only if the 
graph is connected. 

• There are two famous algorithms for this problem: 
– Prim’s Algorithm 
– Kruskal’s Algorithm 

 



• Prim’s Algorithm: 

• Prim’s algorithm is almost the same as 
Dijkstra’s algorithm. As in Dijkstra’s algorithm, 
in Prim’s algorithm we keep the values 
distance and paths in the distance table. The 
only exception is that since the definition of 
distance is different, the updating statement 
also changes a little. The update statement is 
simpler than before. 





• The entire implementation of this algorithm is 
identical to that of Dijkstra’s algorithm. The 
running time is O(|V|2) without heaps [good 
for dense graphs], and O (ElogV) using binary 
heaps [good for sparse graphs]. 



• Kruskal’s Algorithm 
• The algorithm starts with V different trees (V is the vertices 

in the graph). While constructing the minimum spanning 
tree, every time Kruskal’s alorithm selects an edge that has 
minimum weight and then adds that edge if it doesn’t 
create a cycle. So, initially, there are | V | single-node trees 
in the forest. Adding an edge merges two trees into one. 
When the algorithm is completed, there will be only one 
tree, and that is the minimum spanning tree. There are two 
ways of implementing Kruskal’s algorithm: 
– By using Disjoint Sets: Using UNION and FIND operations 
– By using Priority Queues: Maintains weights in priority queue 



• The appropriate data structure is the UNION/FIND 
algorithm [for implementing forests]. Two vertices 
belong to the same set if and only if they are 
connected in the current spanning forest.  

• Each vertex is initially in its own set. If u and v are in 
the same set, the edge is rejected because it forms a 
cycle. Otherwise, the edge is accepted, and a UNION is 
performed on the two sets containing u and v.  

• As an example, consider the following graph (the edges 
show the weights). 





• Now let us perform Kruskal’s algorithm on this 
graph. We always select the edge which has 
minimum weight. 

 



• From the above graph, the edges which have 
minimum weight (cost) are: AD and BE. From 
these two we can select one of them and let 
us assume that we select AD (dotted line). 













• The next low cost edges are CB and EF. But if we 
select CB, then it forms a cycle. So we discard it.  

• This is also the case with EF. So we should not 
select those two. And the next low cost is 9 (BD 
and EG).  

• Selecting BD forms a cycle so we discard it. 
Adding EG will not form a cycle and therefore 
with this edge we complete all vertices of the 
graph. 





• Note:The worst-case running time of this 
algorithm is O(ElogE), which is dominated by 
the heap operations.  

• That means, since we are constructing the 
heap with E edges, we need O(ElogE) time to 
do that. 

 


